Licence Creative Commons Giant Components in Random Temporal Graphs [RANDOM 2023]

12 septembre 2023
Durée : 00:14:50
Nombre de vues 5
Nombre d’ajouts dans une liste de lecture 0
Nombre de favoris 0

A temporal graph is a graph whose edges appear only at certain points in time. Recently, the second and the last three authors proposed a natural temporal analog of the Erdős-Rényi random graph model. The proposed model is obtained by randomly permuting the edges of an Erdős-Rényi random graph and interpreting this permutation as an ordering of presence times. It was shown that the connectivity threshold in the Erdős-Rényi model fans out into multiple phase transitions for several distinct notions of reachability in the temporal setting.


In the present paper, we identify a sharp threshold for the emergence of a giant temporally connected component. We show that at p=log n/n the size of the largest temporally connected component increases from o(n) to n-o(n). This threshold holds for both open and closed connected components, i.e. components that allow, respectively forbid, their connecting paths to use external nodes.

Mots clés : connected components random graphs temporal graphs

 Informations

  • Ajouté par : Mikhail Raskin (mraskin@u-bordeaux.fr)
  • Propriétaire(s) additionnel(s) :
    • Arnaud Casteigts (acasteig@u-bordeaux.fr)
  • Mis à jour le : 8 septembre 2023 18:52
  • Type : Conférence
  • Langue principale : Anglais
  • Discipline(s) :